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ELECTROMAGNETIC SCATTERING BY
CONDUCTING BODIES OF REVGLUTION

SOLUTION USING
SUB-DOMAIN AND ENTIRE-DOMAIN
BASIS FUNCTIONS

by

1. Joseph and R. Mittra
Electromagnetic Communication Laboratory
University of Illinois
Urbana, llinois

Abstract

In this work, the problem of electromagnetic scattering of a plane wave incident on a
=¢nducting body of revolution is considered. The body is assumed to be situated in infinite
homogeneous space. The problern is solved using the method of moments. Use of two
different types of expansion and testing functions, namely, sub-domain type and entire-
domain type is considered. Results obtained using sub-domain pulse functions and entire-
domain Gaussian funciions are presented. The relative advaatages and disadvantages of

cach type of basis functions is discussed.
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INTRODUCTION

The problem of electromagnetic scattering by a
g conducting body of revolution, illuminated by a plane wave
incident from some arbitrary direction is considzred. The
gy geometry of the problem is shown in Fig.l. The body is
generated by the arc C revolving arcund the z-axis.

The objective i1s to compute the scattered far fields and

radar cross-section of the body of revolution. In this paper,

,
&: thz electric field integral equation which enforces the total
. tangential electric fields on the surface c¢f the body to be
”f zero is used to solve the problem. First, equivalent electric
currents are postulated on the surface of the body. The
E scattered field 1is expresse.. in terms of these equivalent
currents. The electric field integral equation is then solved
. numerically to c¢btain the surface currents. The surface
) currents are then used to obtain the radar cross-section and
! far-fields.
, The numerical solution of the integral equation 1is
E obtained using the method of moments. First, the surface
currents are expanded 1n a set of appropriate basis
. furrictions. The resulting equation is then tested with a set
. of welighting functions to obtain a matrix equation with the
X coefficients of the currents as unknowns.
. The currents are expanded in a Fourier series in the
X arimuthal (@) direction and tested with the conjugates of these
cxpansion fanctions., This results in the decoupling of  the
caprat ions of o various azimuthal modes. The advantage of this
1o that one can solve several smaller matrices corvesponding
p
"
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to a two dimensional problem and combine these solutions to

obtain the solution for the body of revolution problemn,

There are several possibkle choices of the
expansion/testing functions in the't—direction(the axial
direction ~ see Fig. 1) for the current. In this paper, two
classes of expansion functions namely, sub-domain and entire-

domain funchions are considered. Two programs, PBOR and GBCR

have been developed. PBOR uses sub-domain pulse basis
functions and testing functions. GBOR uses entire-domain
Gaussian baslis and testing functions. The advantages and

¥

PRI a0

disadvantages of each of these approaches as well as some

€« 9 8
I

numerical examples are presented.
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FORMULATION

Consider a conducting body of revolution situated in
homogeneous space as shown in Fig. 1. The body is illuminated
by a plane wave incident from some arbitrarv angle. The
total electric field at any point in space is the sum of the
incident field and the field scattered by the body. The
total rfield tangential to the surface of the conducting body
is zerc. That is,

ﬁxEtotal — ﬁx[Elnc+Escat} =0 (l)

on the surface of the body. In (1), EINC is the incident
electric field, ESCat is the scattered field, and n is the
outward pointing normal unit vector on the surface of the
scatterer (see Fig. 1). Using equivalence principle, the
scatterer can be replaced with a surface electric current J
radiating in homogeneous space. The scattered field of (1)
can then be expressed in terms of these equivalent currents

as
E' (r) = —joalx)-Vd(r) (2)

with the potentials of (2) given by

. 1 ) )
Alr) = mi—; ”J(r’)(‘f;'\r, r)ds’ (3)
andd
D o= -l——J J plrclr, £)ds’ (4)
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g In (3) and (4), MK and & are the parameters of the

Ex
jﬁ*- homogenaous space and S denotes the surface of the scatterer.
BN The charge density p(r') of (4) can be expressed in terms of

e the surface current J as

pa) = LIV,+3(x)] 5)

The subscript s on the divergence operator denotes surface
divergence. The homogeneous space Greens function G used in

(3) and (4) is defined as

Gle, r) = e (6)

with R being the distance between an observation point
=(p,p,z) and a source point r'=(p',0',z2"). In cylindrical

coordinates it is computed as

R = |r-r'| = \/pz+pm~2pp%xxﬁ¢—¢7+(z—232 (7)

Now we can combine (1) through (7) to get an integral

equation as shown below.
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Here ¢ is the unit vector on the surface of the body, in

the cylindrical coordinate system of Fig. 1, and t is a unit
vector on the surface of the body such that (n,¢.t) form a

right hand triad. The incident field ginC of (8) also can be
expressed as the sum of its ¢ and t components. Thus (8) can

be written in component operator form as

B Bir Biz|l I«

E$nc 321 Bzz Jg

(1u)

The Bij's are integro-differential operators operating

on the appropriate components of current. These are obtained

by computing the dot product of (8) with appropriate unit
vectors and separating out the J¢ part and Jy part. The

exolicit expressicns for these operatcrs are shown below

B, ()= -j(mlJ.j J{siny sinyY cos(®’'-9) + cosy cosylcas’

- J 0
e e Y J.)GAS” | la
4T Gt Jj;)7 7P, (1

)

, o P d
B Caghs »--'*-‘LLJJ‘ siny sinte’-@oan” + L [ “ \"\_ité/ (1t

4T dnee Jt ;30¢
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. b < =" ————
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A
.\ﬂ
.'.-. a 6
k J O , ’
o 25(Jp) = ———“.7 cos(¢p’—9)3ds” + ”. e ()G AS” (11q
L Bo2(Je 4n \ o 4 ax‘p% pde’"?
v’ S
“
'u".
~:
3:a in these equations, the prime< coordinates refer to the
f{_ source points on the surface of the scatterer and the
5,% unprimed coordinates refer to the observation points. The
f,ﬁ angle ¥ is the angle tae tangent vector & makes with the axis
B of the bkody. This angle is taken to be posicive if the
v..l ..c .
i,? tangent vector pcints away from the axis of the body and
... negative if it points towards the axis.The surface divergence
- . . ,
- in surface coordinates given by
>
- ) d
V,'*3 = —==—(p'J) + (Jg)
o ’ pac P70 T 5o e
';: has been used to obtain (11).
SN
. i
v To obtain a solution for the unknown currents Jt and Jg
A
7f: of 411), the method of moments is used. The first step in
.:f the solution procedure is to express the current using a set
I\‘ - . . +
K- of sultable basis functions as shown below.
-~
.::I I, 0 = §Jft,0) + £, (¢, 9) (12a
B
.3': - &
AN o , i ~ \ ’ ] .
.- = q;zz 12U e ™+ tzz.rf”ui‘(t Je ™ (12b
0 R At m=—oon= |
-
!:."
-.\. )
N - ¢Zzuo Ug(t e T,;'"EE ST S (17¢
. ¢}.- EeR X p m=—~oon=] l
&
L
N
N Here the J's are the unknown coefficients of current yet
-",:- o ddetermined. NQ and Ny are the number of basis
| Q‘ : * nredotoexpand Jgoand Jp respect tve by TG
~
:\ ) fe b inedd g
%;
R
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o = anﬂjc (124

The reason for solving for I™ rather than J¢™ will be

discussed later.

In (12), the azimuthal variation of the currents has
been expanded in a Fourier series. The basis functions used
for expansion in the orthogonal (t) direction are denoted by
the U's. These basis functions can either be sub~domain or
entire-domain basis functions. In this paper, one of each
kind is considered. Sub-domain pulse basis functicns with
the necessary derivatives approximated wusing finite
differencing and entire-domain Gaussian basis functions are

considered.

Next step 1in the soluticn process 1s to test the
equations with a set of suitable weighting functions to
obtain a matrix equation. Following Galerkin's method, we
test with the conjugates of the expansion functions. That

is,

—ipb -4
TP = ple™F vi(t)e’*?, q=1,"", N, (13a)

5 = T8 = ui)e ™, g=l, N, (13b)

(12a) is used to test the first row of {10) and (12b) is ucsed

to test the second row.

To obtain the expressions for the matrix elements, the
Greens function G appearing in (11) is expanded in a Fourier

series as shown beolow,
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‘$ 0 where
.:. T _~jkR
Al , e '
2 Gy = ‘I - cos(mé) d& (14p)
.:‘. . - R
itw with R defined in (7) with (¢—¢') replaced with &.
N
sl
A , , .
WCh Testing (10) with (13) now decouples the equations for
-{; various azimuthal modes m. The integrations in ¢ and ¢' can
Y
h*, be carried owt analyticelly. The integratiocns in t and t'
p. > must be done numerically. Also, the Greens function Gy is
,{1 an integral. Thus a three dimensional numerical integration
ﬁ&: is required to obtain the matrix elements corresponding to B.
[ . J,:
e
W The generating arc C in Fig.l over which th2 t and t'
1‘; integrations are to be performed are in general arbitrarily
A . . .
:v shaped. For computational purposes, this curve 1S
>
'”:j approximated as linear segments connected end to end as shown
gt in Fig. 2. Then, the integrations in t and t' 1must be
r
}w carried out over each of these segments. To reduce the
f&% computational effort, we can approxirate the t integral by
evaluating the integrand only on one point per linear segment
m
b} of the generating arc. Trhis is equivalent to doing point
:2 matching when the testing function spans only one linear
'{y segment, such as is the case when pulse basis functions are
" ! . \ . . . .
,ﬁw used. Since this integration 1s carried out over the
?{ incident field which is a smoothly varying quantity, this
’ approximation does not introduce significant error i1if the
b} 0 - Y . . '
- scatterer 1s modeled with sufficient number of linear
fb segments. The resulting expressions for the various PB's for
'.ﬂ;'
- azimucthal mode m are given below. The first summa“tion 1s
_ﬂ over the field segments and the second summation 1s over the
'Eb- source segments. The total number of linear segments is F and
gy the s'th linear segment extends frem tgo] to tg.
3 ,.\',
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no= LR s, Tiee,) sin Y

f=1

F
t’s tS
2sin v;{j QLU Gpalte )] atUlE,) Gm-l<tf.-1/2>}
- €5

s=1 Ls-1 s—1L
F F
j(!)u qy - ’ ts #reD
o Z At THE ¢oq,.)cos ¥e 2 cos ysj dt'Uglt ) Golteoy,2)
f=1 s=1 t:’S--l
F F N
J Z A d rra 1 s e A ornge v .
- ——— t, —[Tdteey, )] dt’ —=[ust )] 6 (te
ATLWE — £ dt t\“f~1/2 - - dt thi+-s my>~£f-1/2

aq=1,2,",N,

n=1,2,", N, (15a)

In
12

F
~MLL
_-»4-*-2 At T, ) sin ¥

£=1

F
ts ts )
z {J. de’pUs(ts) Guarltey,s) J‘ dt'p’Ue(t,”) Gm—l(tf—l/z)}
t.

s-1 - g~1

s=1

F F

t

10 d § ’ ’

+ o= y At —d-tj—[ Tolt ey /) | E £ dt” Uplt,) Golte o)
£=1 s=1 s-1
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F
‘ ~(Opt .
pl = "‘é;t"z Aty Peo1/2Te(te2)

f=1

3 J € ty | )
ZSin Vs j dtU{t,) Gnaalte 1) "j AtUL(es") Gaoy(beny o)}
s==1 l ts—l ‘ ts~l J

F F

N

m z q s 2’ d n ’ \

- — At Tt_n)z-[ dt’ —— Ut G_(t,.

41t(t)£‘f n t ¢( £-1/2 <) at t( ) m( f--1/2
= g=] -1

F
O
By, = e Z Aty Peory Tolteoi,o)

£=1

F
ts ts
> H GEPURE,) GpalErmssa) + | atDUH(E,) Gm-1<tf-.m>}
t

s=1 Es-1 s-1
2 F d t
cm 8
- Y se T, O [ et ue)) e
£=1 s=1 s=1

q = 1I21”.rN¢

n=1,2,",Ny (15d)

The integrals of (15) have a singularity in the
integrand when the source point coincides with the field
point. For a discussion of the handling of the singular

terms, see [2].

As discussed earlier, the basis functions U¢ and U¢ can

be either sub-domain or entire-domain functions. In the next
sectic, pulse basis functions which are of the sub-domain

type ls considered.
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Sub-domain pulse basis functions

Fig. 3 shows the arrangement of pulse basis functieons
used in this paper. Pg¢'s are used for the ¢ component of

current and P¢'s are used for the t ccmponent. They are

defined as follows

{1 teog St St
Uslt) = Pglt) = (16a)
0 otherwise
1 i1z S S ey
ui(e) = pi(e) = (16b)

otherwise

o

Observe that the U¢S is corfined to the s'th linear

segment . Thus there are a total of F of these basis
functions. That is, N¢ = F. On the other hand, we have

chosen the UgS to straddle over two linear segments. There

are a total of F-1 of these, which implies that Ny = F-1.

The first half of the first sub-section and the last half of
the last sub—-section 1s assumed te have zero t-directed
current . This 1s not a correct assumption 1if we are

considering the current densities for a scatterer such as the
one in Fig. 1. However, we can solve for Ty = 2npJy, rather

than .J; itself. In this case, Iy will be close to zero near

the points where the generating approaches the axis, by

virtue of p approaching zero. This 1s the reacon for

.
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jﬁ“ expanding the currents using Iy rather than using J¢ in
[ ,:"::‘ (12c) .

.

;ﬁm? As mentioned previously, the testing functions used are
:ﬁ& conjugates of the expansion functions. Since the pulse basis
.?mf and testing functions are confined to a small region of the
.ﬁwh generating arc of Fig. 2, most of the terms of the double
!kwﬁ summation of (14) will drop out, The resulting expressious
wkﬁp can be simplified as shown in (18). In obtaining these
 $$ expressions, the derivative of Uy has been computed using

fini-e differencing as

3 Ut -0 ()

— (UMt 1)) =
57 (Uele ) 0.5%(At,,,+At )

(17)

As mentioned earlier, the t integration is performed by
doing one function evaluation per linear segment. This turns
out to be one function evaluation per testing function,
These function evaluations are done at the center of each
testing function. The expressions for the elements of the
moment matrix for azimuthal mode m using pulse basis

functions are given on the following pages.
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qn :I(Dﬂ

11 = _é—ﬂl—xs(Atqr 'Yq)Sin'Yn’ {W(tn—l/zr Eartqr m+1)+w(tn—l/2' tartar m-1)}

+ -__]glxs(Atqr'Yq)SinYn*'l’ {W(tn’ tn+1/2,tq,m"'l)+\‘l(tn’tn+1/2’tq’m_l)}

Jou

+ -:l-;t-xc(Atqqu) {CosYn’W(ta1—1/2ftnltqrm) + CC)s’Yn-kl’\V(tnltn+—1/2't.‘q’m)}
- m_{w(t"’ Ert1r tgrrsar m)-W(t s toprr tomrjar m)}
n+1l
* m%xt_{w(tn—l'tnrtq+1/2'm)_\|’(tn—l'tn'tq-1/2’m)} (18a)
n
n=1l, " ,F-1
g=1,"",F~-1

?2 = _(::uxs(Atquq){Wp(tn-lr Car tql m"'l)—'\l"p(tn—ll Y tQ’ m"l)}

+ —m—{\ll(tn_l,tn,tq_l/zrm)"'\v(tq_lrtnltq+1/2rm)} (18Db)
2
=1, ,F
agq=1, ,F-1
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g ::!‘: 2t~ 81 {W(t‘nwllzltn'tq-1/2'm+l) - W(tn-—l/Z'tn'tQ‘“l/Z’mﬁJ‘)}
i

£ wpAt siny,,,’

B A q n+l

; + P {wlt o tarzr Bamr/pemtl) = Wlty, oy or g o mi)}
o

[}
';E‘ mAt mAt

. q:‘. q
B + Wt Erprr tageryz )
el ATWEP 1 AL yy v :

q
47t0)£pq—l,f'2Atn

\V(tn‘-l - nr tq—l/Z ’ m)

n—l’.“,F 1 (lBL)
v q ,v..r o

A
R

Jjwplt,
3; = __Z—'—;{‘Vo(tn—l APy tq' m+l)+‘vp(tn~l' Chr tq-l/2 r m—l)}

[‘:I‘l

ol

2
Jm°At,
- ml_/-;w(tnwlltn'tq—l/Z'm) (184d)
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The various quantities used in (18) are defined in (19)

and (20) below, and in Figs. 2 and 3.
L

wity, t, ty,m = j Gplt 4, t)dt” (19)
. ]

R, -9

A with Gp defined in (14) and (7). The %'s of (18) are defined
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i At oy siny ,+At siny,
g+l qtl q* q
XAt g, vy 5 (20a)
ﬁ At c0o8 1 FAL JcosY,
carl -2 gkl T g g
. XAty ¥y = > (20b)
3
Entire-domain Gau :ian basis functions
Each function of an entire-domain basls set, unlike the
g sub-domain basis functions, span the entire structure. The
: example used here is Gaussian functions as shown in Fig. 4.
o The n'th basis function is centered at Uy (the mean). The
'
v
) "thickness" of the basis function is determined by its
variance Op. The mathematical expressions that describe the
. functions of Fig. 4 are given below.
\ 2
0 ;(u“-t)
e A g tL S t S. tU
2
N . (um) c
. 7 : =0, 5 —— .
¥ Uplt) = Ulft) = ¢"(t) =4 e 5 /= 0 €t <t (20)
L
B, ~(k~t
E -0 { - U) R-ty B
- e [+ tu <t R
¥ tL
» In these expressions, the guantity R 1s the length of
" the generating arc. ty and typ are points on the generating
arc, t;, 1s near t=0 (the beginning of the generating arc)
and ty; is rear t=R (end of the generating arc). The basis
functions are forced to go to zero linearly between t; and 0O,
and petween tyoand R,
\ The basis functions used tor both Je and Jg are the same
‘ and are given 1n {(20) . However, torv ""Y‘D the number of hasis
functions used Is two more than that used for Jy. These two
S
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functions are also Gaussian basis functions

(20)

extra basis

described by and are centered at t=0 and t=R.

The derivatives of basis and test.ng funtctions with
respect t required in (15) are easily computed from (20) and
are given below.

. Y,
e
———e" A\ TS t, €t <ty
g
e 2
2 0. 22
——G“(t)zﬁ e L 0 <t St (21)
ot L
~(r—t,,)
—0.5(”ln ) (-1)
o ty £t €£R
L (R—U)
Unlike the sub-domain basis selt where the number of

basis functions was linked to the number of linear segments
used to model the scatterer, the number of entire-domain

basis functions used have no relationship to the number of

segments on the generating arc. However, since the t
integrations in (15) have been performed by evaluating the
integrand at one point per linear segment, the accuracy of

computations are dependent on the number of linear segmento.

Since each furnction of the basis set extends over the

ent ire span of the gscattering structure, the integrations
required to obtain the expressions for P's must be carried
Gut o over  the ent lre struecture, This causes the computat ion
Pime required to obtain a solution using the entire-domain
AR set to be considerably larger than that uaosing nub
ol Dhas Lo e However, nsing the ent dre-domain oo o oo
aen i obtaln about the gcoame degree of acouriaey in ono ot ion
e e A e e el
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by seolving a smallier matrix than would be required if sub-

domain basis set were used,.

? incident fiald
i
? An arbitrarily polarized incident plane wave field EL1DC
) , . - :
' is expressed as the sum of two linearly polarized plane waves
? as
inc inchinc inctinc ~ikn'T
E"C = (2579 + E;7H) e (22)
-
o
o
ff where
Ainc i L inch i . pine? . panc? .
o 8" = c0s8 " cos¢p "% + cos® “sint™ "y ~ sinf ‘=z (23a)
- . i CA " ~ -
¢ = -5ind "“x + cosd "y (23b)
. - . pin inc? i . _ainc? ine: PR
» n = -5in0"cos¢ " “x ~ sinB " sind'"y —~ cocd " (23c)
= - ' - A ‘
r = pcosd x + psind ¥y + zz (23¢)
8
o The elements of the forcing functieon vector in (10) are
l lound by finding the component of the incident field of (22)
o tangential to the surface of the scatterer and testing with
o :
the functions of (13). The resulting expressions for the
- avimuthal mode m are shown below. In these expressions, By
~.\‘ '
reters to Bessel function of the first kind of order m.
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Summation over the modes

The expressions for the matrix elements and forcing
functicns given in (15) and {(24) are for a single azimuthal
mode m. To obtain a solution to the scattering problem, one
needs to sum over a finite number of modes from -M to M. The
value of M is determined by several factors such as the size
»f the scatterer and the angle of incidence of the
excitation. Usually the fatter (large D) a scatterer, the
larger the number of modes required. When the excitation is
axially incidert, the only modes excited are 1 and -~1. The
farther the excitation is away from the axial direction, the
more the number of modes required tc obtain a solution. A

rule of thumb given by [3] is
M =~ kP,.x3 in'"+6

where Ppax 1s the maximum radial dimension of the scatterer.

This rule is valid eonly if kpmaxsineinc is greater than about

3.
The expressions for the matrix elements and the forcing
functions depend on the mode number m. hhis dependence is

such that the folleowing relationships between the moment
mat rix of the positive modes and those of the corresponding

regat pve modes are val id.

Samilarly, Ul foreding funet tons o are reslated o Fol bows

e am gt R T T S
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iae inc
6
(2] =
91n<: einc
[Ew:\ -E:Q—m
inc inc
@ ¢
Etm _ “Etem
inc inc
L) ]
E¢(ﬂ EQ""“ N

In the above, the superscripts denote the component of
incident field and the subscripts denote local coordinates on
the =scatterer. This relationship between the forcing
functions and matrix elements of positive and negative modes
lead to the following relationship between the coefficients

of equivalent current.

EANES
CAN R
AT

Again, the superscripts denote to the component of
incident f£ield that is producing the currents. Because of
this relationship between coefficients of current for the
positive and negative modes, we need to calculate the

currents of the positive modes.

Computation of Radar Cross-section

The scattered fields can be computed as the radiation
freld field from the egulvalent surtace currents., Using
reciprocity {1}, the expressions for this fleld can be

wrirtten as
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. —'ij

~ -3

a = __J__H.f:___jjmroq ds (25)
4T R

where E¥ is the field due to a test source logated at the

observation point with its amplitude adjusted to produce a

%
unit plane wave at the origin, and polarized in the direction
W of u. Thus,
o
W ¥
~ —jkex
x E° = ue’’ (26)
)
U
ﬁ For the moment solution where current is given as a
summation of the product of the basis functions Bp and
. corresponding coefficients I, (25) can be written as
.. —jwue -3JkR
i Eeu = ——[R][1] (27a)
4T R
ot where
IN
. [R] = UJ-B,,-E‘dsJ (27p)
'y
v,
l"_ . . ) . .
A the integration being carried out over the surface of the
. scatterer. In the above, (27b) has exactly the same form as
-~ that used for the forcing function vector discussed earlier,
the only difference being the basis functions Bp replacing
a the testing functions Tq. Since we are using Galerkin’
procedure, the basis and testing functions are conjugates of
i} one another. Hence the expressions for the vector [R] are
) cbt.ained from the expressions for the forcing function given
_ in (24) by replacing the angles 010C ang ¢iN¢ with the
. corresponding observation angles and changing the mode number
‘ moto o-w Lo account for the conjugation.
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Observe that in (24) we have Ytroken up an arbitrarily
polarized incident plane wave into two linearly polarized
plane waves,. In terms of these components the scattered

field components can be written as

T B (28)
= : N 2
o 4R R | 00 09 I‘*¢J

The elements of the scattering matrix are obtained by
summing the contributions due to the various azimuthal modes

as

o
S.\IV = Z Sr\:\/ (2 9)

uv beinyg 066, 8¢, 6, or ¢¢. The terms under the summation are

ovtained as shown below.

sa = IR, J IRy ] | 07, (30a)
v
J¢ m
- -1

— u rpu L

= R, ol Ry . o . (30b)
le Bzy E@ m

The elements of the various R's used here are obtalned

from the expressions for the E's of (24) by replacing §inc

ard OrHC  with the corresponding observation andgles  and

changing the mode number m to -m. Once the o avteoered Fleld

has heen computed, the radar cross-section defined an
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Escat 2

uv 2 u .

¢ = danr’|—-— (31a)
ﬁ E .nc
B

is easily computed. Using (28), this can be written in terms
% of the elements of the scattering matrix as
M

o'V = am|s®|? (31b)

=

This can easily be extended ([4]) to arbitrarily polarized

<=
L

transmitters and receivers.
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NUMERICAL RESULTS

In this section, sample results obtained using the sub-
domain basis set 1is corpared with those obtained using

entire-domain basis set.

First, a conducting sphere illuminated by a plane wave
polarized in the x direction and travelling in the -z
direction as shown in Fig. 5a 1is considered. The radius of
the sphere is 1 wavelength. The pulse basis set solution is
obtained by modeling the generating arc using 31 linear
segments. This results in approximately 10 sub-sections per
wavelength. (This 1is the recommended density for sub-
sectional basis 1ifunctions). This results 1in a 61 by 6l
matrix equation. For the entire domain basis set, the
scatterer is mcdeled using the same number cf linear segments
as in the pulse basis set, but the number of basis functicns
used is 11 for Jy (and 13 for J¢) - This 1s approximately 4
basis functions per wavelength and is the recommended density
of basis functions for most scatterers when using entire

domain basis functions.

Since the excitation in this case 1s axial, the only
modes excited are 1 and -1. As discussed earlier, only the
positive numbered nodes are computed, since the solution for
the correspond. i negative numbered modes can be

algebraically derived from the positive mode solutiors.

Fig 6 shows the comparison of bistatic scattering
crosa-section for this sphere compated using the two methods.
The two solutions are very cologse to each other. Table 1
compares the computation times required for each ancthod. The
time used by the entlire-domain program is apout twice that

reguired for the sub-domain program.

24



25

Fig. 7 shows the comparison of bilstatic scattering
cross—section of the open-ended c¢ylinder problem shown in
Fig. 5b. The cylinder is 4 wavelengths long and the matrix
sizes used follow the rule of thumb of 10 basis functions per
wavelength for sub-~domain case and 4 basis functions for the
entire domain case. Again, as illustrated by the numbers in
Table 1, the entire domain program results achieves a savings

in the matrix size, but at the expense of more computer time.
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,"I DESCRIPTION OF PROGRAMS
R
.',:: Twih programs, referred to here as PBOR and GBOR have
EACY
j:::, been developed to solve the conducting body of revolution
B . . .
"‘s"‘ scattering problem. PBOR uses the pulse basis set and GBOR
',;.q'l‘ uses the entire domain basis set. Both program require the
L) \ . '
:::0'.'. LINPACK library routines CGECO,CGESL and CGEDI. The input
0
:::::l data ls read from a file. The file name 1s requested by the
e , \ . } ,

“_‘ program curing execution. The output 1is written to two files
"‘-‘ whose names also are requested by the program. Notice that
8 ’*":: the input data required by the two programs are different.

3
s
The format of input data for PBOR is shown below.
-
-Gl NFLDS, WVL

\l
" ; THETA, PHI, ETHETA, ETH-PHASE, EPHI, EFPH-PHASE, NOBS
bt OBST, OBSP
. :-. e e s 0t o s v s @
‘,\::: THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE, NOBS
W - -
K- OBST, OBSP
B
LY 00 e
" ‘::):‘::: ............................................. e o % s s o »

i
‘\ ?.)::.: .........
-\ RHO, 2
§I®
o
¥
@ The first line of input data should have the number of
'n"-" C e . s -~ .
N different excitations (NFLDS) and the wavelength of the
® , . . . , . .
it incldent excitation(s). Following this, there should be
B oW
:,: WELDS lines of incident field data with each line having the
1L
.j,: spherical coordinate angles (in degrees) of incidence THETA
¥ Ly N . - N
}rf and PHI, the magnitude (ETHETA) and phase (ETH-DPHASEK) in
Laﬁ degrees, of the theta component of this excitation, the
I\ -

o2
¥

x

magnitude (EPHI) and phase (EPH-PHASE) in degrees, of the phi
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: ’ component of the excitation, and number of observation points
;:‘ {(NOBS) at which the far-fields and scattering cross-section
are to be computed for this excitation. After this, there
N should be NOBS lines of observation point data with each line
) containing the observation angles theta (OBST) and phi
‘ (OBSP). Repeat this set of incident field data and
{ g observation point data as many times as there are incident
excitations. Finally, there should be as many lines of RHO
g and 2 coordinate points as required to describke the
scatterer. Thase points are connected end to end using
:" R straight lines to obtain an approximation to the generating
arc.

The format of the input data set for GBOR 1is shown

below.

NFLDS, NOBS, N, WVL
THETA, PHI, ETHETA, ETH-PHASE, EPHI, EPH-PHASE

.....

This format of input data for GBOR is scmewhat different

g

from that cof PBOR. The number N indicates the number of basis
- functions that should be used. It should be such that there
' are approximately 4 basis functions per wavelength. The
number of observation points are taken to be the same for all
the excitations. Thus, starting at the second line, there
should ke NFLDS lines of incident field data and following

this NOBS lines of opbservation point data.
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Fig 5a. Conducting sphere used as a test case for results
presented in Fig. 6.
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Fig. 6: Bistatic scattering cross-section of the conducting
sphere jllustrated in rig. fa.
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7: Bistatic scattering cross-section of conducting
cylinder of Fig. Sb.




e P P R T T N TN Y C TV L PO -

36

if#; Computation
B Y : ;

”r“ Matrix size time in cpu
B oM Length of seconds on

generating cray xmp-—48
arc in
wavelengths

el Scatterer

w° Sub Entirgd Sub Entire
i domain domain ) domain domain

) Sphere 3.14159 51 24 7.834 15.385

§ Cylinder 4.0 81 34 8.061 17.181

Table 1. Comparison of computation times and matrix sizes for
scattering problems using entire demain basis functions
oA and sub-domain bkasis functions.
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